SPMM21008U Datadrevet personlig medicin – fra epidemiologi til patient

Årgang 2024/2025
Engelsk titel

Data Driven Personalised Medicine – From Epidemiology to Patient

Uddannelse

Dette kursus udbydes på Master i Personlig Medicin.

Masteruddannelsen er efteruddannelse for sundhedsprofessionelle.

Master i personlig medicin er udviklet i tæt samarbejde mellem de fire sundhedsvidenskabelige fakulteter på hhv. Københavns Universitet, Aarhus Universitet, Aalborg Universitet og Syddansk Universitet samt Danmarks Tekniske Universitet. På den måde sikrer vi, at du bliver undervist af nationale eksperter fra internationalt anerkendte forskningsmiljøer i Danmark.

Læs mere om uddannelsen på hjemmesiden: www.personligmedicin.ku.dk 

 

Kursusindhold

Forstå hvordan forskellige typer real-world data, alt fra genetik til app-indsamlede miljøpåvirkninger, kan bidrage til bedre diagnose, prognose og personlig behandling. Kurset fokuserer på klinisk afprøvning af datadrevne metoder og beslutningsstøtteværktøjer samt inddragelse af patienter.

Få en dybere forståelse af værdien af forskellige typer big data til brug inden for personlig medicin. Disse data kan være omics data f.eks. genomsekvenser, men også andre kilder som f.eks. app-indsamlede eksposom-information og outcomes relevant for personlig medicin.

Et væsentligt tema er statistiske observationer for populationsforskning, og hvordan dette er relevant for individuelle patienter. Herudover får du en teoretisk basis for at forholde dig kritisk til behandlingsrelevante omics-varianter samt forstå̊, hvordan disse bidrager til diagnose, prognose og behandlingsvalg.

Du bliver også introduceret til beslutningsstøtteværktøjer i klinikken og principper for klinisk afprøvning af datadrevne metoder.

Kurset tager udgangspunkt i følgende specifikke emner: Datakilder, patientnære real-world data fra genom til app-indsamlede exposomer og outcomes, metoder der forbinder populationsforskning med individuelle patienter (machine learning, big data mining, dataintegration), kritisk vurdering af behandlingsrelevant genom-, proteom- og metabolomvariation, diagnose, prognose, behandling, beslutningsstøtteværktøjer til klinikken, patientinddragelse, klinisk afprøvning af datadrevne metoder.

Målbeskrivelser

Efter endt kursus forventes den studerende at:
 

Viden:

  • Identificere og definere forskellige typer real-world data, molekylære og ikke-molekylære
  • Beskrive og evaluere metoder som anvendes til integration af forskellige datatyper
  • Forholde sig kritisk til behandlingsrelevante omics varianter
  • Regøre for principper bag datadrevne beslutningsstøtteværktøjer i klinikken

 

Færdigheder:

  • Forstå brugen af datadreven personlig medicin samt formidle og diskutere dette med kolleger, andre faggrupper og offentligheden
  • Bruge teknikker og programmer til dataanalyse som f.eks. R
  • Udføre analyser som integrerer forskellige typer af heterogene data
  • Kritisk evaluere resultater af sådanne analyser

 

Kompetencer:

  • Overblik over forskellige typer af real-world data og hvordan sådanne data kan anvendes i et longitudinelt perspektiv i forbindelse med udviklingen af personlig medicin (patientforløb)
  • Kritisk vurdere klinisk afprøvning af datadrevne metoder og brugen af beslutningsstøtteværktøjer i klinikken

 

Undervisningsmateriale

Artikler og udvalgte bogkapitler

Litteraturlisten findes på e-læringsportalen Absalon

 

Læs mere om ansøgningskrav på uddannelsens hjemmeside. Find link til ansøgningskrav under fanen 'Tilmelding' nedenfor.
Intensivt kursus der primært består af team-based learning og cases med tværfagligt gruppearbejde og understøttende forelæsninger. Kurset har løbende afleveringer, som tilsammen evalueres som eksamen.
  • Kategori
  • Timer
  • Forelæsninger
  • 6
  • Holdundervisning
  • 12
  • Forberedelse (anslået)
  • 96
  • Projektarbejde
  • 14
  • Eksamen
  • 10
  • I alt
  • 138
Løbende feedback i undervisningsforløbet
Point
5 ECTS
Prøveform
Portfolio
Prøveformsdetaljer
Kurset har løbende afleveringer, som tilsammen evalueres som eksamen.
Krav til indstilling til eksamen

De studerende i grupper skal uploade opgavesvar hver eftermiddag samt aflevere og præsentere en poster.

Hjælpemidler
Alle hjælpemidler tilladt
Bedømmelsesform
bestået/ikke bestået
Censurform
Ingen ekstern censur
Eksamensperiode

Se information om eksamenstidspunkt i uddannelsens eksamensplanen. Eksamensplanen offentliggøres på denne hjemmeside:  https://sund.ku.dk/uddannelse/studieinformation/eksamensplaner/

Reeksamen

Ved reeksamen benyttes samme eksamensform som ved ordinær eksamen

Se information om tidspunkt for reeeksamen i uddannelsens eksamensplanen. Eksamensplanen offentliggøres på denne hjemmeside:  https://sund.ku.dk/uddannelse/studieinformation/eksamensplaner/

Kriterier for bedømmelse

For at opnå karakteren 12 skal den studerende:

Viden:

  • Identificere og definere forskellige typer real-world data, molekylære og ikke-molekylære
  • Beskrive og evaluere metoder som anvendes til integration af forskellige datatyper
  • Forholde sig kritisk til behandlingsrelevante omics varianter
  • Regøre for principper bag datadrevne beslutningsstøtteværktøjer i klinikken

 

Færdigheder:

  • Forstå brugen af datadreven personlig medicin samt formidle og diskutere dette med kolleger, andre faggrupper og offentligheden
  • Bruge teknikker og programmer til dataanalyse som f.eks. R
  • Udføre analyser som integrerer forskellige typer af heterogene data
  • Kritisk evaluere resultater af sådanne analyser

 

Kompetencer:

  • Overblik over forskellige typer af real-world data og hvordan sådanne data kan anvendes i et longitudinelt perspektiv i forbindelse med udviklingen af personlig medicin (patientforløb)
  • Kritisk vurdere klinisk afprøvning af datadrevne metoder og brugen af beslutningsstøtteværktøjer i klinikken