SPMM21008U Datadrevet personlig medicin – fra epidemiologi til patient
Data Driven Personalised Medicine – From Epidemiology to Patient
Dette kursus udbydes på Master i Personlig Medicin.
Masteruddannelsen er efteruddannelse for sundhedsprofessionelle.
Master i personlig medicin er udviklet i tæt samarbejde mellem de
fire sundhedsvidenskabelige fakulteter på hhv. Københavns
Universitet, Aarhus Universitet, Aalborg Universitet og Syddansk
Universitet samt Danmarks Tekniske Universitet. På den måde sikrer
vi, at du bliver undervist af nationale eksperter fra
internationalt anerkendte forskningsmiljøer i Danmark.
Læs mere om uddannelsen på hjemmesiden:
www.personligmedicin.ku.dk
Forstå hvordan forskellige typer real-world data, alt fra
genetik til app-indsamlede miljøpåvirkninger, kan bidrage til bedre
diagnose, prognose og personlig behandling. Kurset fokuserer på
klinisk afprøvning af datadrevne metoder og
beslutningsstøtteværktøjer samt inddragelse af patienter.
Få en dybere forståelse af værdien af forskellige typer big data
til brug inden for personlig medicin. Disse data kan være omics
data f.eks. genomsekvenser, men også andre kilder som f.eks.
app-indsamlede eksposom-information og outcomes relevant for
personlig medicin.
Et væsentligt tema er statistiske observationer for
populationsforskning, og hvordan dette er relevant for individuelle
patienter. Herudover får du en teoretisk basis for at forholde dig
kritisk til behandlingsrelevante omics-varianter samt forstå̊,
hvordan disse bidrager til diagnose, prognose og behandlingsvalg.
Du bliver også introduceret til beslutningsstøtteværktøjer i
klinikken og principper for klinisk afprøvning af datadrevne
metoder.
Kurset tager udgangspunkt i følgende specifikke emner: Datakilder,
patientnære real-world data fra genom til app-indsamlede exposomer
og outcomes, metoder der forbinder populationsforskning med
individuelle patienter (machine learning, big data mining,
dataintegration), kritisk vurdering af behandlingsrelevant genom-,
proteom- og metabolomvariation, diagnose, prognose, behandling,
beslutningsstøtteværktøjer til klinikken, patientinddragelse,
klinisk afprøvning af datadrevne metoder.
Efter endt kursus forventes den studerende at:
Viden:
- Identificere og definere forskellige typer real-world data, molekylære og ikke-molekylære
- Beskrive og evaluere metoder som anvendes til integration af forskellige datatyper
- Forholde sig kritisk til behandlingsrelevante omics varianter
- Regøre for principper bag datadrevne beslutningsstøtteværktøjer i klinikken
Færdigheder:
- Forstå brugen af datadreven personlig medicin samt formidle og diskutere dette med kolleger, andre faggrupper og offentligheden
- Bruge teknikker og programmer til dataanalyse som f.eks. R
- Udføre analyser som integrerer forskellige typer af heterogene data
- Kritisk evaluere resultater af sådanne analyser
Kompetencer:
- Overblik over forskellige typer af real-world data og hvordan sådanne data kan anvendes i et longitudinelt perspektiv i forbindelse med udviklingen af personlig medicin (patientforløb)
- Kritisk vurdere klinisk afprøvning af datadrevne metoder og brugen af beslutningsstøtteværktøjer i klinikken
Artikler og udvalgte bogkapitler
Litteraturlisten findes på e-læringsportalen Absalon
- Kategori
- Timer
- Forelæsninger
- 6
- Holdundervisning
- 12
- Forberedelse (anslået)
- 96
- Projektarbejde
- 14
- Eksamen
- 10
- I alt
- 138
Du kan ansøge om deltagelse på kurset som enkeltfagsstuderende. Læs mere og ansøg på uddannelsens hjemmeside.
- Point
- 5 ECTS
- Prøveform
- Portfolio
- Prøveformsdetaljer
- Kurset har løbende afleveringer, som tilsammen evalueres som eksamen.
- Krav til indstilling til eksamen
De studerende i grupper skal uploade opgavesvar hver eftermiddag samt aflevere og præsentere en poster.
- Hjælpemidler
- Alle hjælpemidler tilladt
- Bedømmelsesform
- bestået/ikke bestået
- Censurform
- Ingen ekstern censur
- Eksamensperiode
Se information om eksamenstidspunkt i uddannelsens eksamensplanen. Eksamensplanen offentliggøres på denne hjemmeside: https://sund.ku.dk/uddannelse/studieinformation/eksamensplaner/
- Reeksamen
Ved reeksamen benyttes samme eksamensform som ved ordinær eksamen
Se information om tidspunkt for reeeksamen i uddannelsens eksamensplanen. Eksamensplanen offentliggøres på denne hjemmeside: https://sund.ku.dk/uddannelse/studieinformation/eksamensplaner/
Kriterier for bedømmelse
For at opnå karakteren 12 skal den studerende:
Viden:
- Identificere og definere forskellige typer real-world data, molekylære og ikke-molekylære
- Beskrive og evaluere metoder som anvendes til integration af forskellige datatyper
- Forholde sig kritisk til behandlingsrelevante omics varianter
- Regøre for principper bag datadrevne beslutningsstøtteværktøjer i klinikken
Færdigheder:
- Forstå brugen af datadreven personlig medicin samt formidle og diskutere dette med kolleger, andre faggrupper og offentligheden
- Bruge teknikker og programmer til dataanalyse som f.eks. R
- Udføre analyser som integrerer forskellige typer af heterogene data
- Kritisk evaluere resultater af sådanne analyser
Kompetencer:
- Overblik over forskellige typer af real-world data og hvordan sådanne data kan anvendes i et longitudinelt perspektiv i forbindelse med udviklingen af personlig medicin (patientforløb)
- Kritisk vurdere klinisk afprøvning af datadrevne metoder og brugen af beslutningsstøtteværktøjer i klinikken
Kursusinformation
- Sprog
- Dansk
- Kursuskode
- SPMM21008U
- Point
- 5 ECTS
- Niveau
- Master
- Varighed
- 1 semester
- Placering
- Forår
- Skemagruppe
- Gå til hjemmesiden for Master i personlig medicin for at se kursusdetaljer vedrørende antal undervisningsdage, kursusdatoer og eksamensplan: https://personligmedicin.ku.dk/kursus/
- Kursuskapacitet
- 30
Pris
Pris: 11.500 Kr.
Studienævn
- Studienævnet for Masteruddannelserne ved Det Sundhedsvidenskabelige Fakultet
Udbydende institut
- Institut for Klinisk Medicin
Udbydende fakultet
- Det Sundhedsvidenskabelige Fakultet
Kursusansvarlige
- Søren Brunak (soren.brunak@cpr.ku.dk)
- Jessica Xin Hjaltelin (jessica.hu@cpr.ku.dk)
- Isabella Friis Jørgensen (isabella.jorgensen@cpr.ku.dk)
Undervisere
Kursusansvarlige:
Søren Brunak, Forskningschef, Professor, of Disease Systems
Biology, leder af Novo Nordisk Foundation Center for Protein
Research (CPR), Københavns Universitet.
Jessica Hu Hjaltetin, Adjunct in computational cancer biology at
the NNF Center for Protein Research, Copenhagen University
Isabella Friis Jørgensen, Adjunct in Systems biology at the NNF
Center for Protein Research, Copenhagen University