NMAA13034U Introduction to K-theory (K-Theory)
MSc Programme in Mathematics
K-theory associates to a C*-algebra A two abelian groups K_0(A) and K_1(A) that on the one hand contain deep information about the algebra A and on the other hand can be calculated for great many algebras. K-theory is one of the most important constructions in operator algebras, non-commutative geometry and in topology with a host of applications in mathematics and in physics. For commutative unital C*-algebras, alias continuous functions on compact spaces, there are two equivalent descriptions of the K-groups, each with its own advantages. In one description K_0 classifies (stable) projections and in the other description it classifies (stable) vector bundles over the compact space(the spectrum) associated to the algebra.
The course will contain the following specific elements:
- Projections and unitaries in C*-algebras
- Definition, standard picture and basic properties of the K-groups: K_0 and K_1.
- Classification of AF-algebras
- Exact sequences and calculation of K-groups.
- Bott periodicity.
- The six term exact sequence in K-theory.
Knowledge: The student will obtain knowledge of the elements mentioned in the description of the content
Skills: After completing the course the student will be able to
1. calculate K-groups
2. classify projections and unitaries in C*-algebras
3. understand AF-algebras and their classification
Competences:
After completing the course the student will be able to
1. prove theorems within the subject of the course
2. apply the theory to concrete C*-algebras
3. understand the extensive litterature on elementary K-theory and
to read the more advanced parts of the subject.
Academic qualifications equivalent to a BSc degree is recommended.
- Category
- Hours
- Lectures
- 32
- Preparation
- 150
- Theory exercises
- 24
- Total
- 206
- Credit
- 7,5 ECTS
- Type of assessment
- Continuous assessmentEvaluation during the course of 6 written assignments. Each assignment counts equally towards the grade.
- Aid
- All aids allowed
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
One internal examiner.
- Re-exam
Oral, 30 minutes. Several internal examiners. 30 minutes preparation time with all aids.
Criteria for exam assesment
The student must in a satisfactory way demonstrate that he/she has mastered the learning outcome of the course.
Course information
- Language
- English
- Course code
- NMAA13034U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 4
- Schedule
- A
- Course capacity
- No limit
- Continuing and further education
- Study board
- Study Board of Mathematics and Computer Science
Contracting department
- Department of Mathematical Sciences
Contracting faculty
- Faculty of Science
Course Coordinators
- Mikael Rørdam (6-858285777480538074877b417e8841777e)