NFYK15013U CANCELLED: Glacier Dynamics and Modelling
MSc Programme in Physics
The purpose of this course is to provide insights to ice sheet flow and the response of glaciers and ice sheet to climate change. Glaciers and ice sheets evolve in time and contribute to sea level change, but to estimate their extent and evolution in the past and in the future is a complex problem.
The course focuses on the theoretical background of glacier dynamics, and numerical methods used to model flow and evolution of ice sheets and glaciers. The course will discuss the climate forcing of glacier evolution, and the interactions between glaciers and the Earth and climate system, as well as relevant glaciological observations used to validate the models or for data-assimilation.
The description of mass and heat flow in glaciers is based on continuum mechanics. A number of physical processes must be considered, such as the mechanical properties of ice and how they depend on crystal structure and temperature, surface mass balance processes, ice-ocean interactions, temperature distribution and basal meltwater, and the relation to fast flowing ice streams.
Skills
After completing this course, the student will be able to:
- Describe mass and heat flow in glaciers based on continuum mechanics.
- Describe the flow law of ice, and the physical processes related to ice sheet flow and evolution, such as the surface mass balance, basal melting and sliding, ice-ocean interactions, isostatic movements and geothermal heat flux.
- Explain the most common approximations and methods used in numerical ice flow models and discuss their advantages and limitations.
- Use numerical methods to solve for the ice sheet flow and evolution, and ice temperature.
- Discuss the modelling results in relation to relevant geophysical and glaciological data.
- Use programming tools from Matlab (or an equivalent language) to set up simple numerical models.
Knowledge
This course will provide knowledge of the physical processes
controlling flow of glaciers and ice sheets, and of their response
to a climate forcing. It will also provide knowledge of the methods
used to incorporate these processes into numerical modelling, and
how the models are validated and calibrated, in combination with
relevant observations and laboratory measurements.
Competences
The course will provide students with a background to understand
how ice sheets and glaciers react to climate changes, and the
issues related to predict their contribution to past and present
sea level changes. The course demonstrates that glacier dynamics
and modelling involves a combination of physical, mathematical and
numerical steps and require data for validation and calibration.
This is similar to a wide range of problems within Earth system
modelling, and will prepare the students for further
studies.
See the course page at Absalon.
- Category
- Hours
- Exercises
- 35
- Lectures
- 35
- Preparation
- 136
- Total
- 206
As
an exchange, guest and credit student - click here!
Continuing Education - click here!
- Credit
- 7,5 ECTS
- Type of assessment
- Written assignment, 27 hours27 hours take-home-project
- Aid
- All aids allowed
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
more internal censors
- Re-exam
30 minutes oral exam with 30 minutes preparation. All aids allowed.
Criteria for exam assesment
see "learning outcome"
Course information
- Language
- English
- Course code
- NFYK15013U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 3
- Schedule
- B
- Course capacity
- no restriction
- Continuing and further education
- Study board
- Study Board of Physics, Chemistry and Nanoscience
Contracting department
- The Niels Bohr Institute
Contracting faculty
- Faculty of Science
Course Coordinators
- Aslak Grinsted (aslak@nbi.ku.dk)
Lecturers
Dorthe Dahl-Jensen