NFYK13021U Neutron Scattering
MSc Programme in Nanoscience
MSc Programme in Physics
MSc Programme in Physics with a minor subject
Neutron scattering is one of the most important experimental
methods for the study of the atomic-scale structure and dynamics of
condensed matter. Neutron scattering complements the well-known
technique of X-ray diffraction by being well suited for the study
of light elements (hydrogen in particular), magnetic structures,
and collective excitations like lattice vibrations and spin waves.
This course will present an introduction to neutron scattering and
its applications, strengths, and weaknesses, and describe
simulation of neutron scattering instruments.
The course topics are
- Scattering from atoms, crystals, and nanostructures.
- Magnetic scattering.
- Elastic and inelastic scattering
- Scattering from lattice vibrations, spin waves, and soft condensed matter.
- Design of neutron instruments for different types of science
- Hands-on neutron scattering experiments
Skills
After the course, the optimal student will be able to:
- Apply the theory for some main types of scattering: diffraction, small-angle, spectroscopy
- Use standard programs for analysis of neutron/X-ray data
- Solve simple neutron-optical problems
- Use the ray-tracing package McStas to build virtual instruments and perform virtual experiments
- Plan and perform standard neutron experiments as a part of a group, including beam time planning and optimization, and maintaining a logbook
- Report on novel scientific work on a level that could form the basis of a publication
- Judge whether neutron scattering is an appropriate method for a given project
Knowledge
After the course, the optimal student will be able to:
- Understand the principles in neutron scattering and the
strengths and weaknesses of the method
Characterize main types of scattering: elastic/inelastic, coherent/incoherent, nuclear/magnetic - Explain the principles for neutron instrument design for all types of experiments listed above
- Know the theory behind ray-tracing and Monte-Carlo simulations
- Have knowledge on radiation security (PSI security course will be passed as a part of this course)
Competences
This course will equip the students with the necessary skills for
understanding and neutron scattering, a technique that has
application for and can be utilized in fields outside physics.
The course will give the students thorough training in performing
and analyzing Monte-Carlo simulations.
The students will learn how to perform and report on experiments in
a large-scale facility environment, and to perform teamwork on such
a facility to obtain the best possible results under strict time
constraints.
Notes
Knowledge of crystallography is preferred.
Basic knowledge of the principles of programming is required.
Academic qualifications equivalent to a BSc degree is recommended.
- Category
- Hours
- Lectures
- 28
- Preparation
- 62
- Practical exercises
- 56
- Laboratory
- 60
- Total
- 206
Written and oral peer or teacher feedback on the three mandatory reports. Written and oral feedback on experimental work abroad.
- Credit
- 7,5 ECTS
- Type of assessment
- Oral examination, 20 minutes
- Type of assessment details
- An oral exam in the central topic of the course
- Exam registration requirements
2 reports based on computer experiments and theory and 1 report based on experiments in Switzerland must be approved.
- Aid
- All aids allowed
- Marking scale
- passed/not passed
- Censorship form
- No external censorship
More internal examiners
- Re-exam
An oral exam in the central topic of the course. If the reports have not been approved, please contact the course responsible to arrange new reports including possibly a new experiment. The reports have to be subitted two weeks before the re-examination.
Criteria for exam assesment
See learning outcome
Course information
- Language
- English
- Course code
- NFYK13021U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
8 ugers undervisning samt 1 uges praktik på PSI i Schweiz
- Placement
- Block 4
- Schedule
- B
- Course capacity
- 20
The number of seats may be reduced in the late registration period
Study board
- Study Board of Physics, Chemistry and Nanoscience
Contracting department
- The Niels Bohr Institute
Contracting faculty
- Faculty of Science
Course Coordinators
- Kim Lefmann (7-6f6869706471714371656c316e7831676e)
Lecturers
Kim Lefmann
Pascale Deen (ESS)
Kirsten Ø Jensen
Jacob Kirkensgaard