NMAK17002U Complex Analysis 2
MSc Programme in Mathematics
MSc Programme in Mathematics with a minor subject
The course covers
- Holomorphic, harmonic and subharmonic functions
- Normal families, conformal mapping and Riemann's mapping theorem
- Infinite products and Weierstrass factorization
- Growth of entire functions
- Picard's theorems
- Eulers Gamma function
and related topics
Knowledge: After completing the course the student is expected to have a thorough knowledge of definitions, theorems and examples related to the topics mentioned in the description of the course content and to have a deeper knowledge of complex analysis, both from an analytic and a geometric/topological point of view.
Skills: At the end of the course the student is expected to have the ability to use the acquired knowledge to follow arguments and proofs of advanced level as well as to solve relevant problems using complex methods.
Competences: At the end of the course the
student is expected to be able to:
1. Reproduce key results presented in the course together with
detailed proofs thereof,
2. Construct proofs of results in complex analysis at the
level of this course,
3. Use the course content to study relevant examples and to solve
concrete problems.
Academic qualifications equivalent to a BSc degree is recommended.
- Category
- Hours
- Lectures
- 35
- Preparation
- 117
- Exercises
- 14
- Exam Preparation
- 39
- Exam
- 1
- Total
- 206
- Credit
- 7,5 ECTS
- Type of assessment
- Oral examination, 30 minutes
- Type of assessment details
- There will be 30 minutes of preparation time before the oral examination.
- Exam registration requirements
To be allowed to take the oral exam the student must have at least 2 out of 3 homework assignments approved.
- Aid
- Only certain aids allowed
All aids allowed during the preparation time. No aids allowed during the examination.
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
Several internal examiners.
- Re-exam
Oral examination, 30 minutes with 30 minutes preparation time. All aids allowed during the preparation time. No aids allowed during the exam.
To be allowed to take the re-exam, students who have not already had 2 out of the 3 mandatory assignments approved must (re)submit all 3 assignments no later than three weeks before the beginning of the re-exam week and two of these assignments must be approved no later than two weeks before the beginning of the re-exam week.
Criteria for exam assesment
The student should convincingly and accurately demonstrate the knowledge, skills and competences described under Intended learning outcome.
Course information
- Language
- English
- Course code
- NMAK17002U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 2
- Schedule
- C
- Course capacity
- no limit
Study board
- Study Board of Mathematics and Computer Science
Contracting department
- Department of Mathematical Sciences
Contracting faculty
- Faculty of Science
Course Coordinators
- Henrik Laurberg Pedersen (henrikp@math.ku.dk)