NKEA07016U Computational Chemistry
MSc Programme in Chemistry
MSc Programme in Chemistry with a minor subject
MSc Programme in Nanoscience
Theoy and application of molecular mechanics methods, statistical mechanics methods, statistical computational method, Ab Initio methods, Density Functional Theory methods, Hybrid Quantum / Classical methods, methods for simulation of molecular properties and spectra, methods for simulation of thermodynamical properties, methods for simulation of chemical reactions, molecular dynamics methods for chemical problems within organic and inorganic chemistry, biochemistry, atmospheric chemistry, spectroscopy. The lectures concern the theories behind the different methods and the practical application of them on chemical problems.The computer exercises help the student to apply modern computational chemistry software and complete the computational chemistry project that each student has to do in order to pass the course.
Knowledge:
The student will be able to derive, analyze, and utilize the
following items:
- Molecular mechanics methods,
- ab initio methods,
- density functional theory methods,
- hybrid quantum-classical methods
- simulating molecular properties and thermodynamical properties
- molecular reactions dynamic
Skills:
The student will be able to establish, evaluate and complete a
theoretical investigation of a chemical problem using modern
scientific computing software within chemistry.
Competence
The student will be able to evaluate a concrete computational
chemistry problem and utilize the most efficient and suitable
calculation method.
The home page of the course provides the information about books and material.
- Category
- Hours
- Lectures
- 82
- Preparation
- 143,5
- Practical exercises
- 39
- Project work
- 147
- Exam
- 0,5
- Total
- 412,0
As an exchange, guest and credit student - click here!
Continuing Education - click here!
- Credit
- 15 ECTS
- Type of assessment
- Written assignmentOral examination, 30 min (without preparation)
- Type of assessment details
- ---
- Aid
- All aids allowed
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
several internal examiners
- Re-exam
Same as ordinary exam.
Any deficiencies in the report must be corrected and a new oral exam is held.
Criteria for exam assesment
The report should be written in the form of a scientific
article. It should contain: abstract, keywords, introduction,
theory + method, computational results and discussion ending with a
conclusion. There has to be figures, tables and references.
It should contain the motivation for your work, a short description
of related work, goal and relevance of your work, Argumentation for
why you have chosen the given method.
Details of the calculations (used programs, basis set, geometries,
etc), in short all the
information needed to reproduce your calculations. Presentation of
your results (use figures, pictures if necessary tables) and
discussion of the results, such as what did you learn from your
results?
Course information
- Language
- English
- Course code
- NKEA07016U
- Credit
- 15 ECTS
- Level
- Full Degree Master
- Duration
- 2 blocks
- Placement
- Block 1 And Block 2
- Schedule
- A
- Course capacity
- No limitation – unless you register in the late-registration period (BSc and MSc) or as a credit or single subject student.
Study board
- Study Board of Physics, Chemistry and Nanoscience
Contracting department
- Department of Chemistry
Contracting faculty
- Faculty of Science
Course Coordinators
- Kurt Valentin Mikkelsen (3-6d6f6b42656a676f306d7730666d)
Lecturers
Kurt V. MIkkelsen, Stephan P. A. Sauer, Gemma C. Solomon, Thorsten Hansen