NFYK16005U  CHANGED: Introduction to Gauge/Gravity Duality

Volume 2018/2019

MSc Programme in Physics



This course gives an introduction to the foundations and formulation of the gauge/gravity duality which is a correspondence between (supersymmetric) quantum field theories and gravity (string) theories. The course will introduce the students to the necessary background material and present the formulation of the duality. 

Learning Outcome


At the end of the course, the student will:

  • Know the necessary background material which includes non-abelian gauge theories, large N limit, supersymmetry, conformal symmetry, supergravity, anti-deSitter space times, black holes and D-branes (in string theory).
  • Be familiar with the origin of the gauge/gravity (or AdS/CFT) duality, and know its precise formulation and some of its simplest tests. 
  • Have an overview of important generalizations and consequences of the duality. 


At the end of the course, the student is expected to:

  • Be able to explain the formulation of non-abelian gauge theories and the large N limit.
  • Be able to explain the concept of supersymmetry, conformal symmetry, superconformal symmetry and the main properties of field theories with such symmetries.
  • Have a general understanding of the main properties of D-branes and their supergravity descriptions
  • Be able to explain the properties of anti-deSitter spacetime and black holes in this spacetime.
  • Be able to explain the formulation of the AdS/CFT correspondence and some of the simplest tests.  


This course builds on the knowledge of,quantum field theory, general relativity and some parts of string theory (which is not mandatory though). The course will provide the students with a competent background for further studies within this research field, i.e. a M.Sc. project in theoretical high energy physics. It will also provide those that plan to continue into experimental high energy physics, or cosmology with the necessary background to understand the main elements of the gauge/gravity duality.
This course will provide the students with tools that have application in a range of fields in physics (including condensed matter theory) and mathematics.

See Absalon for final course material. The following is an example of expected course litterature.

Gauge/Gravity Duality
Foundations and Applications


Martin Ammon, Johanna Erdmenger, Cambridge University Press

It is recommended that the student has followed courses on the following subjects at M.Sc. level:
General Relativity and Cosmology
Elementary Particle Physics
Quantum Field Theory
String Theory
Lectures and exercises
7,5 ECTS
Type of assessment
Oral examination, 30 minutes
Oral exam, 30 minutes, no preparation time
Without aids
Marking scale
7-point grading scale
Censorship form
No external censorship
More internal examiners.

same as regular exam

Criteria for exam assesment

see learning goals

  • Category
  • Hours
  • Lectures
  • 35
  • Exercises
  • 21
  • Exam
  • 0,5
  • Preparation
  • 149,5
  • Total
  • 206,0