NDAB20005U Økonometri A (ØkA)

Årgang 2020/2021
Engelsk titel

Econometrics A (ØkA)

Uddannelse

Bacheloruddannelsen i datalogi-økonomi

 

Kursusindhold

Økonometri A gennemgår den multiple lineær regressionsmodel for primært tværsnitsdata, men kurset behandler også tidsrækkedata og paneldata. Estimationsmetoden Ordinary Least Squares (OLS) introduceres og statistiske egenskaber som middelrethed, konsistens og asymptotisk normalitet af OLS diskuteres i detaljer. Hypotesetest af populationsparametre præsenteres, såvel som generelle test af misspecifikation. Avancerede emner som tidsrække regressioner, Instrumental Variables (IV) estimation, og panel data metoder introduceres også i kurset med henblik på at estimere kausalitet. 

Kurset lægger vægt på, at de studerende selv får mulighed for at udføre regressionsanalyser i praksis; både ved hjælp af forprogrammerede rutiner i statistiske programpakker såsom STATA og ved brug af et matrixprogrammeringssprog, hvor der skabes en en-til-en sammenhæng mellem computerkode og de teoretiske ligninger i lærebogen. En vigtig del af kurset er derfor øvelsestimerne, hvori de studerende vil udarbejde selvstændige empiriske analyser og udvikle computerkode som implementerer de økonometriske metoder, som anvendes i kurset.

 

Målbeskrivelser

Viden om

  • Redegøre for den multiple lineære regressionsmodel.

  • Beskrive og forklare de mest centrale antagelser i regressionsanalyse, samt hvordan disse påvirker de estimerede parameterværdier.

  • Diskutere og forklare om parameterestimater kan tillægges en kausal fortolkning.

  • Forklare statistisk inferens i den lineære regressionsmodel og beskrive de centrale antagelser

  • Redegøre for fortolkningen af parametre for kontinuerte, diskrete og transformerede variable i en regressionsmodel.

Færdigheder i at

  • Udføre statistisk inferens for den lineære regressionsmodel.

  • Anvende økonometriske kriterier til at vælge det mest foretrukne sæt af parameterestimater blandt flere muligheder.

  • Udføre deskriptive analyser af datasæt med henblik på anvendelse i regressionsanalyse.

  • Udlede simple estimatorer samt karakterisere deres statistiske egenskaber i form af middelrethed, konsistent og efficiens.

  • Udføre og implementere følgende estimationsmetoder: Ordinary Least Squares (OLS), Weighted Least Squares (WLS), Generalized Least Squares (GLS), Instrumental Variables (IV), Differences-in-Differences (DD), First Differences (FD), Fixed Effect (FE) and Random Effect (RE).

  • Beregne t-test, F-tests, LM-tests, og Wald-test for hypotesetest af parameterrestriktioner i den lineær regressionsmodel for både homoskedastiske samt heteroskedastiske fejlled.

  • Fortolke parametre til de forklarende variable i en regressionsmodel.
  • Redegøre for fortolkningen af parametre for kontinuerte, diskrete og transformerede variable i en regressionsmodel.

  • Udføre test for misspecifikation (heteroskedasticitet, funktionel form, eksogenitet) og redegøre for deres fortolkning.

  • Anvende simulationseksperimenter til at illustrere og efterprøve egenskaber for statistiske estimatorer og test.

  • Anvende givne parameterestimater i en konkret beregning på en økonomisk problemstilling og redegøre for resultaterne.

  • Udvikle computerkode som implementerer de økonometriske metoder, som anvendes i kurset.

Kompetencer til at

  • Planlægge og gennemføre en empirisk analyse af et selvstændigt udvalgt emne med udgangspunkt i de gennemgåede økonometriske metoder.
  • Anvende økonometriske metoder til at vurdere og vælge mellem økonomiske teorier og på den måde skabe selvstændig og evidensbaseret viden.
  • Anvende fundne parameterestimater i en konkret beregning på en økonomisk problemstilling.

Deltagelse i kurset forudsætter viden om grundlæggende statistisk metode og sandsynlighedsteori svarende til indholdet af faget "Grundlæggende Sandsynlighedsteori og Statistik". Der anvendes matematiske forudsætninger fra MatIntro og LinAlgDat, herunder matrixregning.
Pensum vil primært blive gennemgået ved forelæsningerne. I holdtimer arbejdes der både med teoriopgaver, simuleringseksperimenter og anvendt økonometrisk analyse baseret på faktiske datasæt. Statistisk software til regressionsanalyse vil blive introduceret i forbindelse med holdundervisningen, som også træner skriftlig formidling af resultaterne. Det sker i form af opsummeringer som fx sammenfatter resultaterne af en empirisk analyse eller diskuterer problemerne ved en bestemt økonometrisk model.

Den studerende skal løbende over semesteret aflevere obligatoriske hjemmeopgaver til holdunderviserne og til de angivne frister. Opgaverne vil efterfølgende blive gennemgået og diskuteret på holdene.
  • Kategori
  • Timer
  • Forelæsninger
  • 56
  • Holdundervisning
  • 42
  • Forberedelse (anslået)
  • 96
  • Eksamen
  • 12
  • I alt
  • 206
Mundtlig
Kollektiv
Løbende feedback i undervisningsforløbet
Point
7,5 ECTS
Prøveform
Skriftlig aflevering, 12 timers
Tag-hjem-opgave til den ordinære eksamen
Krav til indstilling til eksamen

3 ud af 3 obligatoriske afleveringsopgaver skal være godkendt for at den studerende kan deltage i eksamen.

 

Hjælpemidler

Til den skriftlige ordinære eksamen er alle hjælpemidler tilladt.

Til den mundtlige reeksamination er ingen hjælpemidler tilladt.

 

Bedømmelsesform
7-trins skala
Censurform
Ingen ekstern censur
Flere interne bedømmere
Reeksamen

30 minutters mundtlig eksamen (inklusiv bedømmelse) uden forberedelse

Kriterier for bedømmelse

Se målbeskrivelsen.