NNDK19001U CANCELLED - Problems and Promises of Big Data Science
Big data is everywhere! Automated strategies for knowledge production are entering many scientific fields, and algorithms are increasingly guiding decision-making on economic, judicial and medical issues. But how reliable are the results of big data analysis? Can an algorithm be sexist? And what about privacy?
The course will give students a basic understanding of techniques used in big data analysis and their implications for science and society. We introduce the regulatory frameworks governing data use, and provide students with tools and concepts needed for a systematic analysis of issues related to the use of big data in science and society.
Applying a theoretical background from philosophy of science and ethics, we will analyze a number of concrete cases illustrating issues related to big data. Examples of topics are risk and uncertainty, privacy, justice and discrimination, and accountability and expertise.
The course will be taught as a combination of lectures, class discussions and individual project work, where students are allowed to give in-depth analysis of a case of their own choosing under supervision.
After following the course students should have the following skills, knowledge and competences:
Knowledge about
- Regulatory frameworks governing data use
- Basic procedures for selected big data methods
- Epistemic and ethical issues raised by the use of big data
- Central concepts in big data ethics and epistemology
Skills to
- Identify regulatory and ethical issues in cases of big data analysis
- Identify potential scientific uncertainty in cases of big data analysis
- Analyze cases of big data analysis using regulatory, ethical and epistemological concepts
Competences
- Discuss and critically reflect on regulatory and ethical issues in cases of big data analyses in various domains
- Discuss and critically reflect on uncertainty in cases of big data analysis in various domains
- Discuss and critically reflect on the relation between regulatory, ethical and epistemological issues of scientific uncertainty
Students will be given a collection of research papers and excerpts from textbooks.
- Category
- Hours
- Exam
- 1
- Guidance
- 2
- Lectures
- 24
- Preparation
- 155
- Theory exercises
- 24
- Total
- 206
- Credit
- 7,5 ECTS
- Type of assessment
- Oral examinationOral exam 20 minutes based on individual written project
- Exam registration requirements
An individual project must be handed in and passed.
- Aid
- Only certain aids allowed
The project report from the individual written project is the only aid allowed.
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
Several internal examiners
- Re-exam
Same as ordinary. If the exam registration requirements were not met, an individual project must be handed in and approved. The project must be handed in at least 3 weeks before the reexam week.
Criteria for exam assesment
See Learning Outcome |
Course information
- Language
- English
- Course code
- NNDK19001U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 2
- Schedule
- B
- Course capacity
- 50
- Continuing and further education
- Study board
- Study Board for the Biological Area
Contracting department
- Department of Science Education
Contracting faculty
- Faculty of Science
Course Coordinators
- Mikkel Willum Johansen (mwj@ind.ku.dk)
Lecturers
Sune Hannibal Holm, Sara Green, Mads Paludan Goddiksen, Mikkel Willum Johansen.