NMAK19010U Introduction to Lie Algebras
MSc Programme in Mathematics
1) Lie algebras
2) Matrix Lie algebras
3) Some representation theory
4) Structure theory of Lie algebras
5) Cartan-Weyl basis
6) Classification of simple Lie algebras
At the end of the course the students are expected to have acquired the following knowledge and associated tool box:
- the mathematical framework of Lie algebras, including basic examples in the form of matrix Lie algebras
- basic representation theory of Lie algebras
- structure theory of Lie algebras, with main emphasis on semi-simple Lie algebras
- Killing form, roots, and root space decomposition
- the fundamental classification theorems for simple Lie algebras, including Serre's theorem
Skills:
- be able to use the fundamental results on Lie algebras to solve concrete mathematical problems
- be able to work rigorously with representaions of Lie algebras, including decompositions in special cases
- be able to formulate and solve certain types of physical problems by applying the theory of Lie algebras and their representations
Competences: The course aims at training the students in formulating and handling specific mathematical problems, possibly inspired by physics, by use of the theory of Lie algebras and their representations.
Lecture notes will be made available through Absalon.
Academic qualifications equivalent to a BSc degree is recommended.
- Category
- Hours
- Exam
- 20
- Lectures
- 32
- Preparation
- 122
- Theory exercises
- 32
- Total
- 206
- Credit
- 7,5 ECTS
- Type of assessment
- Continuous assessmentTwo longer written assignments in week 5 and week 9, plus 5 smaller written assignments in weeks 2,3,4,6,7. The assignments will be graded on a scale from 0 to 100% and in order to pass the student must obtain at least 50% for each assignment.
- Aid
- All aids allowed
- Marking scale
- passed/not passed
- Censorship form
- No external censorship
One internal examiner.
- Re-exam
30 minutes oral examination without aids. No preparation time. Several internal examiners at the re-exam.
Criteria for exam assesment
The student must in a satisfactory way demonstrate that he/she has mastered the learning outcome of the course.
Course information
- Language
- English
- Course code
- NMAK19010U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 3
- Schedule
- C
- Course capacity
- No restrictions/ no limitation
- Continuing and further education
- Study board
- Study Board of Mathematics and Computer Science
Contracting department
- Department of Mathematical Sciences
Contracting faculty
- Faculty of Science
Course Coordinators
- Bergfinnur Durhuus (durhuus@math.ku.dk)
Lecturers
Jørgen Rasmussen