NKEA07005U Unifying Concepts in Nanoscience (UCN)
MSc Programme in Chemistry
MSc Programme in Nanoscience
Nanosized systems have special properties. The objective of the course is to learn about the unifying concepts that form the scientific basis of these special properties and the methods used and developed to study them. The physical and chemical basis for the special properties of nanoscale systems will be developed systematically using the simple models and theory. Examples are from currect nanoscience and nanotechnology.
After completing the course, the student should be able to:
Knowledge:
- Concepts of absorption, spontaneous emission and stimulated
emission.
- Concepts of vibrational spectroscopy techniques, IR, Raman, SERS
and surface plasmons.
- Particle in a box model.
- Concepts on electron tunneling, transport and transfer.
- Concepts of high resolution microscopy.
- Concepts of Single molecule fluorescence spectroscopy and
fluorescence correlation spectroscopy.
- Concepts of energy transfer (FRET, Dexter), aggretate properties
(J and H), eximer and exiplex interactions and superquenching.
- Concepts on molecular electronics, OLED and OFET, thin film
devices.
- Concepts on biological and artificial membranes.
- Concepts on nanowire based bioFETs.
- Knowledge about the properties of nanomaterials like graphene,
carbon nanotubes, nanowires, quantum dots, small metal clusters and
nanoparticles.
- Concepts on the different properties of bulk material versus
nanoparticles.
Skills:
- Apply the above mentioned knowledge for understanding and
calculating nanoscale system properties and behavior.
Competency:
- Read recent nanoscience and course related articles, understand
them, present them and write a self consistent essay on them.
- Write an assignments on a specific concept, technique, literature
review and nanoscience related research proposal.
Lecture notes and additional material, See Absalon
- Category
- Hours
- Lectures
- 62
- Preparation
- 160
- Project work
- 190
- Total
- 412
Written feedback on the assignements. Collective and continous feedback on the student presentations. Feedback on the oral exam on the written essay and on the performace during the exam.
- Credit
- 15 ECTS
- Type of assessment
- Oral examination, 30 min (no preparation time)Continuous assessmentCHANGED in 2018:
Weight: (a) 25% Assignments, (b) 25% Essay, (c) 50% Oral Exam. Parts (b) and (c) must be passed in order to pass the course. - Aid
- All aids allowed
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
several internal examiners
- Re-exam
Same as the ordinary exam.
The assignments and essay must be completed 2 weeks before the oral re-exam. It is possible to reuse the scores of the assignments and the essay if they were handed in on time.
Criteria for exam assesment
Understand and be able to explain the principles and concepts/properties seen in the course: Energy Transfer, Electron transfer and transport, Electronic coupling, particle in a box, tunneling, optical and vibrational spectroscopy techniques, SERS, high resolution fluorescence microscopy, self assembly, aggregate formation, absorption, spontaneous and stimulated emission, biological and artificial membranes, properties of nanowires, nanosensors (bioFET), nanotubes, graphene, properties of small metal clusters, molecular electronics
Course information
- Language
- English
- Course code
- NKEA07005U
- Credit
- 15 ECTS
- Level
- Full Degree Master
- Duration
- 2 blocks
- Placement
- Block 1 And Block 2
- Schedule
- C
- Course capacity
- No admission restriction
- Continuing and further education
- Study board
- Study Board of Physics, Chemistry and Nanoscience
Contracting department
- Department of Chemistry
Contracting faculty
- Faculty of Science
Course Coordinators
- Tom André Jos Vosch (tom@chem.ku.dk)