NDAK14003U CANCELLED: Discrete Optimization (DO)
Discrete Optimization is concerned with solving optimization
problems with discrete variables. Such variables may represent
indivisible commodities or yes/no decisions to buy, invest, hire,
build, etc. Discrete optimization problems arise in countless
scenarios, e.g. when developing time tables for airplanes, trains
or buses, in scheduling problems, in facility location problems and
in network design problems.
Many discrete optimization problems can be formulated as integer
linear programming (ILP) problems with integer variables, a linear
objective function and linear constraints. The advances of ILP have
been remarkable over the last 25 years. Many difficult practical
ILP problems can today be solved to near-optimality not because of
faster computers but because of new theoretical results.
The purpose of this course is to familarized participants with the
state-of-the-art ILP techniques. The course will cover such topics
as lower bound techniques (e.g. linear and Lagrangian relaxations)
and their importance in branch-and-bound algorithms. Cutting
planes, column generation and branch-and cut algorithms will also
be covered. Since linear programming (with continuous variables)
plays a key role in solving ILP problems, this topic will be
covered and the SIMPLEX algorithm will be explained in detail.
Not all ILP problems can be solved within reasonable time limits.
The course will therefore also cover approximation algorithms and
heuristic methods where the optimality requirement is abandoned but
where it is possible to either bound the deviation from the optimum
or where reasonable solutions can be produced very fast but without
any error guarantees.
Knowledge
- Comprehensive knowledge of discrete optimization problems (linear and integer programming in particular).
- Familarity with algorithms and heuristics that can solve discrete optimization problems.
Skills
- Formulation of (simple) real-life problems as (integer) linear programming problems.
- Selection of appropriate algorithms suitable to solve a particular discrete optimization problem.
- Application of software packages or self-implemented software to solve such problems.
Competences
- Recognition of real-life problems solvable by methods introduced in this course.
- Identification of suitable algorithms to solve such problems.
- Design of new algorithms and heuristics for existing and new problems.
See Absalon.
Academic qualifications equivalent to a BSc degree is recommended.
- Category
- Hours
- Exam
- 1
- Exercises
- 14
- Lectures
- 28
- Preparation
- 163
- Total
- 206
As an exchange, guest and credit student - click here!
Continuing Education - click here!
PhD’s can register for MSc-course by following the same procedure as credit-students, see link above.
- Credit
- 7,5 ECTS
- Type of assessment
- Oral examination, 30 minStudents will have to take an oral examination, 30 min. without preparation. The examination will consist of two parts: questions related to the scientific paper presented during the course and questions covering the syllabus of the course.
- Exam registration requirements
Students will have to get approved lecture notes on 3 selected topics covered in the course (individually). These will be reviewed by other students and by the lecturer.
Students will have to present a scientific paper (in groups of 2 -3).
- Aid
- All aids allowed
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
Several internal examiners.
- Re-exam
Same as ordinary exam.
If a student has not qualified for the ordinary exam he/she can qualify by submitting 3 lecture notes and a written summary of selected paper no later than 14 days before the re-exam if this was not done during the course.
Criteria for exam assesment
See Learning Outcome.
Course information
- Language
- English
- Course code
- NDAK14003U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 1
- Schedule
- B
- Course capacity
- No limit
- Continuing and further education
- Study board
- Study Board of Mathematics and Computer Science
Contracting department
- Department of Computer Science
Contracting faculty
- Faculty of Science
Course Coordinators
- Pawel Winter (pawel@di.ku.dk)