NBIK10024U Advanced Protein Science 2 – Protein Structure Determination
MSc Programme in Biochemistry
The course gives an introduction to the range of methods that can be used to study protein structures at various levels of resolution. Most central are X-ray crystallography and NMR spectroscopy, but these can be supplemented by other biophysical techniques (Cryo electron microscopy, FRET, EPR, etc) and molecular simulations. The course will provide a broad background to how NMR and X-ray crystallography can be used to derive the three dimensional structures of proteins. Further examples, will include how other biophysical methods, sometimes integrated with computational tools, can be used to study structures when e.g. X-ray or NMR fails. The students will also learn how to analyse and evaluate experimentally derived protein structures. Finally, the course will contain an overview of how computational methods in structural biology, e.g. molecular dynamics simulations and Monte Carlo methods, can be used to study the structure and dynamics of proteins, including of intrinsically disordered proteins. The format for the course is a mixture of lectures, group discussions and hands-on introductions to e.g. software used in protein structure determination and molecular simulations. A substantial part of the reading material is expected to be primary research articles and review articles.
Knowledge:
- Understand how protein structures can be determined via X-ray crystallography
- Understand how protein structures can be determined via NMR spectroscopy
- Understand the key spectroscopic observables available in NMR
- Understand how other biophysical techniques can be used to obtain lower resolution structural information
- To understand the basic principles of simulation techniques and how they can be used together with experimental methods
- Have an overview of methods for protein structure prediction and homology modelling
- To have working knowledge on examples of how protein dynamics
can affect protein function
Skills:
- Have the ability to read and critically evaluate publications containing macromolecular X-ray crystallography or NMR structures/data
- Be able to, at a rudimentary level, design strategies for structural studies of proteins
- To compare the strengths, limitations and complementary potential of structural data obtained using techniques based on completely different physical phenomena
- To be able to use simple methods for protein structure determination
- To be able to visualize results from molecular simulations
Competencies:
The central competency is to be able to view and understand a broad range of biophysical methods, including those in computers, and to envisage how these methods can be integrated in structural studies of proteins.
See Absalon.
- Category
- Hours
- Exam
- 1
- Lectures
- 21
- Practical exercises
- 20
- Preparation
- 143
- Theory exercises
- 21
- Total
- 206
- Credit
- 7,5 ECTS
- Type of assessment
- Oral examination, 20 minutes20 minutes preparation time
- Exam registration requirements
To be allowed to the final exam, the student has to have participated in minimum 80% of the sessions, to present at least a single paper and have to hand in answers to all questions. The latter must be accepted by the lecturer.
- Aid
- Without aids
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
One internal examiner
- Re-exam
The same as ordinary exam.
Students who have fulfilled the 80% presence rule but have not had their hand-ins accepted, have to hand in new answers no later than three weeks before the reexamination.
If the requirement of 80% participation in the sessions is not fulfilled, the student must take the course again the next year.
Criteria for exam assesment
In order to achieve the grade 12 the
student should be able to demonstrate a substantial amount of
the knowledge, skills and competencies described under
"Learning outcome".
The student should also have participated actively in the lectures,
contributed actively in the student presentations, in both cases as
outlined above.
Course information
- Language
- English
- Course code
- NBIK10024U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 4
- Schedule
- A
- Course capacity
- 28
- Continuing and further education
- Study board
- Study Board for the Biological Area
Contracting department
- Department of Biology
Contracting faculty
- Faculty of Science
Course Coordinators
- Kresten Lindorff-Larsen (lindorff@bio.ku.dk)