NMAA13036U CHANGED: Introduction to Mathematical Logic
MSc Programme in Mathematics
First order logic, languages, models and examples. Formal deduction, deduction metatheorems, soundness, completeness and compactness, and applications of compactness. Basic axiomatic set theory, ordinals and cardinals. Towards the end of the course, other topics such as recursion theory, computable functions on the natural numbers, Turing machines, recursively enumerable sets, and arithmetization of first order syntax may be discussed.
Knowledge: By the end of the course, the student is expected to be able to explain the concepts of: a first order language; of a model of a first order language; of formal deduction; of a computable relation and function; arithmetization of first order syntax; the axioms of Zermelo-Fraenkel set theory; ordinals and cardinals.
Skills: By the end of the course, the student must be able to define the satisfacation relation, account for the axioms of the deductive system. The student must be able to prove the key theorems of the course, such as the deduction theorem, the soundness theorem, completeness theorem, and the compactness theorem.
Competences: Use of first order languages and structures in mathematics, the formalization of proofs, proof methods based on the compactness. Use ordinal analysis and transfinite recursion.
Example of course litterature:
H. Enderton: A Mathematical Introduction to Logic
- Category
- Hours
- Exam
- 40
- Lectures
- 28
- Preparation
- 117
- Theory exercises
- 21
- Total
- 206
As
an exchange, guest and credit student - click here!
Continuing Education - click here!
- Credit
- 7,5 ECTS
- Type of assessment
- Written assignment, 72 hoursCHANGED FOR THE STUDY YEAR 2018/19
Written take-home assignment 3 days (9am Monday to 9am Thursday in week
8 of the block. - Exam registration requirements
To be eligible to take the final exam the student must have handed in the 2 mandatory homework assignments, and these must both have been approved.
- Aid
- All aids allowed
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
One internal examiners
- Re-exam
CHANGED FOR THE STUDY YEAR 2018/19
Same format as the ordinary exam, but taking place in the re-exam week. If the 2 mandatory homework assignments were not approved before the ordinary exam they must be approved at the latest three weeks before the beginning of the re-exam week.
Criteria for exam assesment
The student must in a satisfactory way demonstrate that he/she has mastered the learning outcome of the course.
Course information
- Language
- English
- Course code
- NMAA13036U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 4
- Schedule
- C
- Course capacity
- No limit
- Continuing and further education
- Study board
- Study Board of Mathematics and Computer Science
Contracting department
- Department of Mathematical Sciences
Contracting faculty
- Faculty of Science
Course Coordinators
- Asger Dag Törnquist (asgert@math.ku.dk)