NKEK13019U Molecular Electronics Theory
MSc Programme in Chemistry
MSc Programme in Nanoscience
The chemistry and physics of molecular transport junctions is introduced with an emphasis on molecular structure, bonding, and electrostatics. The two transport regimes, coherent and incoherent, are defined. Focus is on the coherent transport regime and the Landauer equation, which describes coherent current through a junction. Vibrational effects, and other physics beyond the Landauer equation such as switching and the Kondo resonance are discussed briefly. Marcus electron transfer theory is discussed and contrasted with electron transmission.
A detailed derivation of the Landauer equation is given, with an emphasis on physical assumptions. To do this, non-equilibrium Green’s functions and the Keldysh contour in the complex time plane are introduced.
After this course you can
- predict electronic coupling through a molecule based on its structure.
- define Hamiltonians and spectral functions of a molecular transport junction based on its geometry.
- calculate the transmission function of a molecular transport junction.
- connect electronic coupling through a molecule to the features of its transmission function.
- design molecular transport junctions with desired transport properties.
- compare electron transfer to electron transmission.
[- derive dynamic expectation values of quantum mechanical observables using non- equilibrium Green’s functions.]
- Category
- Hours
- Exam
- 0,5
- Lectures
- 42
- Practical exercises
- 28
- Preparation
- 107,5
- Theory exercises
- 28
- Total
- 206,0
As
an exchange, guest and credit student - click here!
Continuing Education - click here!
- Credit
- 7,5 ECTS
- Type of assessment
- Oral examination, 30 min (no preparation time)Mandatory in-class presentation and written report.
- Aid
- All aids allowed
- Marking scale
- passed/not passed
- Censorship form
- No external censorship
several internal examiners
- Re-exam
Same as ordinary exam
Criteria for exam assesment
See the course description
Course information
- Language
- English
- Course code
- NKEK13019U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 4
- Schedule
- C
- Course capacity
- No admission restrictions
- Continuing and further education
- Study board
- Study Board of Physics, Chemistry and Nanoscience
Contracting department
- Department of Chemistry
Contracting faculty
- Faculty of Science
Course Coordinators
- Gemma C. Solomon (gsolomon@chem.ku.dk)
Lecturers
Gemma C. Solomon, Thorsten Hansen