NFYK16009U Particle Detectors and Accelerators
MSc Programme in Physics
MSc Programme in Physics w. minor subject
The purpose of this course is to learn how subatomic particles
are produced with accelerators and detected in modern experiments
and how the experimental data are analyzed. This will involve
almost all previously learned physics.
The course will conclude with a visit to a physics laboratory where
accelerators and particle detectors are in daily focus.
This course is central for any later course or master/PhD project
in experimental subatomic physics and also recommended for students
specializing in X-ray physics, neutron physics and medical physics
or other fields using energetic subatomic particles.
In the laboratory, students will operate particle detectors such as scintillator counters and gaseous tracking detectors, using cosmic rays and radioactive sources, in order to measure physical quantities.
In the class-room they will make calculations of the expected performance of various detectors and accelerators.
Skills: After the course the students
- can make a new design or evaluate an existing design of a particle detector system or an accelerator for a given purpose using analytical methods.
- can make more precise simulations of detector performance and analyze the data using tools based on the C++ language.
- can make a simple read-out trigger system using NIM electronics and modern FPGA techniques.
- can combine knowledge from many different disciplines to obtain a practical result.
Knowledge: The students will know about:
- Principles of particle accelerators.
- Theory of particle passage through matter.
- Concepts of data analysis and simulation.
- Various software tools based on C++.
- All types of different particle detectors, their principle of operation, advantages and limitations.
- Basic concepts of electronics and read-out.
Competences:
This course will provide competence for further studies within
experimental particle, nuclear, X-ray, neutron, medical physics or
other physics using particle detection and also strengthen general
programming, electronics and other “engineering”
competences.
Lecture notes will be available for sale at Polyteknisk Boghandel, Biocenter.
Laboratory instructions will be uploaded to the course homepage
- Category
- Hours
- Colloquia
- 1
- Exam
- 0,5
- Excursions
- 36
- Lectures
- 33
- Practical exercises
- 20
- Preparation
- 74,5
- Project work
- 33
- Theory exercises
- 8
- Total
- 206,0
As
an exchange, guest and credit student - click here!
Continuing Education - click here!
- Credit
- 7,5 ECTS
- Type of assessment
- Oral examination, 30 minContinuous assessmentThe continuous part of the evaluation consists of theoretical and experimental exercises during the course and counts for 20% of the final grade.
The oral exam Count for 80% of the final grade. The students will be provided, three days before the exam, with a publication about a recently proposed experiment, and a set of questions regarding the publication. The answer to these questions will constitute the basis of a 15 minutes presentation the students will give on the subject, on the day of the exam. The presentation will be followed by questions on the material presented and on the general subjects of the course. - Aid
- All aids allowed
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
More internal examiners
- Re-exam
Same as regular exam. Students who have not passed the continuous part of the evaluation should contact the teacher before the re-exam in order to finish any missing exercises.
Criteria for exam assesment
see learning outcome
Course information
- Language
- English
- Course code
- NFYK16009U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 4
- Schedule
- B
- Course capacity
- 25
- Continuing and further education
- Study board
- Study Board of Physics, Chemistry and Nanoscience
Contracting department
- The Niels Bohr Institute
Contracting faculty
- Faculty of Science
Course Coordinators
- Peter Henrik Hansen (phansen@nbi.ku.dk)
Lecturers
Graig Wiglesworth (craig.wiglesworth@nbi.ku.dk)