NDAK15014U Advanced Topics in Machine Learning (ATML)
MSc Programme in Computer Science
MSc Programme in Statistics
The purpose of this course is to expose students to selected advanced topics in machine learning. The course will bring the students up to a level sufficient for writing a master thesis in machine learning.
The course is relevant for computer science students as well as students from other studies with good mathematical background, including Statistics, Actuarial Mathematics, Mathematics-Economics, Physics, etc.
The exact list of topics will depend on the lecturers and trends in machine learning research and will be announced on the course's Absalon page. Feel free to contact the course organiser for details.
Examples of topics that were taught in the last year include:
PAC-Bayesian analysis
The soul of Machine Learning: How to trade-off prior knowledge and data fit in a principled way
Stochastic Gradient Descent
Advanced topics on Support Vector Machines
Learn fast ways to train one of the most successful learning models – Support Vector Machines
- Online learning
How to learn when data collection and learning are coupled together
How to adapt to changing and adversarial environments
Reinforcement learning
How to learn when agent actions are changing its state
Knowledge of
Selected advanced topics in machine learning, including:
- design of learning algorithms
- analysis of learning algorithms
The exact list of topics will depend on the teachers and trends in machine learning research. They will be announced on the course's Absalon page.
Skills to
- Read and understand recent scientific literature in the field of machine learning
- Apply the knowledge obtained by reading scientific papers
- Compare machine learning methods and assess their potentials and shortcomings
Competences to
- Understand advanced methods, and apply the knowledge to practical problems
- Plan and carry out self-learning
See Absalon.
It is assumed that the students have successfully passed the “Machine Learning” course offered by the Department of Computer Science (DIKU). In case you have not taken the “Machine Learning” course at DIKU, please, contact the course organiser to obtain the relevant material and do the necessary self-preparation before the beginning of the course. (For students with strong mathematical background and some background in machine learning it should be possible to do the self-preparation within a couple of weeks.)
- Category
- Hours
- Class Instruction
- 14
- Exercises
- 94
- Lectures
- 28
- Preparation
- 70
- Total
- 206
As
an exchange, guest and credit student - click here!
Continuing Education - click here!
PhD’s can register for MSc-course by following the same procedure as credit-students, see link above.
- Credit
- 7,5 ECTS
- Type of assessment
- Continuous assessment5-7 weekly take home exercises.
The final grade will be the average over all assignments except the worst one. - Aid
- All aids allowed
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
Several internal examiners
- Re-exam
The re-exam consists of two parts. The two parts will be given an overall assessment.
The first part is handing in at least 5 of the course assignments no later than 2 weeks before the oral part of the exam.
The second part is an oral exam (30 minutes) in the course curriculum without preparation.
Criteria for exam assesment
See Learning Outcome.
Course information
- Language
- English
- Course code
- NDAK15014U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 1
- Schedule
- C
- Course capacity
- No limit
- Continuing and further education
- Study board
- Study Board of Mathematics and Computer Science
Contracting department
- Department of Computer Science
Contracting faculty
- Faculty of Science
Course Coordinators
- Yevgeny Seldin (seldin@di.ku.dk)
Lecturers
Christian Igel