NFYB10021U Condensed Matter Physics 2 (CMP2)

Volume 2015/2016

MSc Programme in Nanoscience

MSc Programme in Physics


The course provides an introduction to interesting phenomena in condensed matter physics including electronic structure theory, spontaneous symmetry breaking, magnetism, superconductivity, non-equilibrium transport, optical conductivity, quantum Hall effect etc.
This course is an introduction to selected topics in condensed matter physics, building on the foundations of condensed matter physics 1 (CMP1).
The course serves as an excellent continuation of CMP1 and/or CMT1 and can be taken equally well on 3rd or 4th year.

Learning Outcome

The student should be able to:

  • describe how and why the free-electron band model works/fails.
  • describe how and why electrons interact in solid materials.
  • understand the basics of mean-field theory, Landau models, and apply it to concrete models.
  • use the rules of semiclassical electron dynamics and the Boltzmann equation to calculate the basic transport properties of solids.
  • describe the different types of magnetically ordered structures.
  • derive the magnetic excitations of ordered moments.
  • explain the basic properties of superconductivity.
  • describe the foundation and consequences of Ginzburg-Landay theory
  • use the BCS theory to understand the microscopic properties of superconductivity.

We will initially review the basics of solid state theory in terms of band structure and nearly-free electrons. Then we will study magnetism and mean-field theory in terms of both Landau models and microscopic models. We will use this to study the general properties of phase transitions in solid systems and briefly touch of the concepts of universality and critical phenomena. Also we will discuss the break down of mean-field theory and the role of fluctuations. Then we will introduce superconductivity and study this fascinating quantum state by both phenomenological models and the microscopic BCS theory. This will allow us to study Josephson junctions, vortex lattices, Andreev reflection etc.

This course will provide the students with a competent background for further studies within the research field of condensed matter physics, including both theoretical and experimental M.Sc. projects at the local condensed matter groups. The general calculation skills acquired during the course will help the students in following more advanced courses and more readily attack future research projects.

Kittel: “Introduction to Solid State Physics” + Notes by Brian M. Andersen.

The following courses or equivalent: Quantum mechanics 1&2, Statistical physics, Condensed Matter Physics 1.

It is recommended that students have taken CMP1 prior to enrolling in this class.
Lectures and exercises
Restricted elective for specialisation "Quantum Physics2
  • Category
  • Hours
  • Exam
  • 0,5
  • Lectures
  • 32
  • Preparation
  • 141,5
  • Theory exercises
  • 32
  • Total
  • 206,0
7,5 ECTS
Type of assessment
Oral examination, 20 minutes
20 minutes without preparation time. The course contains three longer written hand-in problems, whose content and solution will be a natural part of the oral examination.
Marking scale
7-point grading scale
Censorship form
No external censorship
More internal examiners
Criteria for exam assesment

The highest mark (12) is given for excellent exam performance that demonstrates full mastering of the above mentioned teaching goals under Skills with no or only small irrelevant gaps. The grade 2 is given to a student who has achieved only minimally the course goals described underSkills.