NFYK12003U Quantum Geometry – A Statistical Field Theory Approach
Volume 2013/2014
Education
MSc Programme in
Physics
Content
The purpose of this
course is to show that the quantum mechanics of the relativistic
particle can be understood entirely geometrically as a sum over
random paths, and that the quantum mechanics of strings similarly
can be understood entirely geometrically as a sum over random
surfaces. In particular this will lead to an understanding of
two-dimensional quantum gravity coupled to conformal field
theories, the only theory we presently know which couples matter
and geometry in a fully consistent way.
Definition of the path integral in quantum mechanics. Application to relativistic particles and to strings. This covers selected parts of the book ”Quantum Geometry”.
Definition of the path integral in quantum mechanics. Application to relativistic particles and to strings. This covers selected parts of the book ”Quantum Geometry”.
Learning Outcome
Skills
The purpose of this course is that the student
obtains a basic understanding of quantum field theory and string
theory from a statistical mechanics point of view, i.e. quantum
field theory represented as a theory of random walks and string
theory as a theory of random surfaces.
In
particular, this means that when the course is finished it is
expected that the student is able to:
- understand how to quantize the bosonic and fermionic particles using random walk reprentations.
- understand how to analyse more general random ensembles, like branched polymers and relate them to particle propagation
- understand the concept of random surfaces and how it relates to string theory
- have a basic understanding of the fact that bosonic string theory cannot exist in space-time dimensions larger than two
- understand the essentials of non-critical string theory
- understand how non-critical string theory is related to two-dimensional quantum gravity coupled to matter with central charge less than one
- understand how to define the concept of Hausdorff dimension and the concept of fractal dimensions of an ensemble of geometric objects
- be able to calculate the fractal dimension for random works and for random surfaces.
Knowledge
The student is expected to be able to derive
and explain the fundamental representation of particles and strings
in terms of random geometry as well as the universality of these
results.
Competences
This course will provide the students with a competent background
for further studies within this research field, e.g. an M.Sc.
project
Literature
Jan Ambjorn, B. Durhuus and
T. Jonsson,Quantum: Geometry – A Statistical Field Theory Approach,
Cambridge Monographs on Mathematical Physics, 1998
Academic qualifications
The course only requires
basic knowledge of differentiation, integration and complex numbers
and some basic knowledge of statistical mechanics
Teaching and learning methods
Lectures
Workload
- Category
- Hours
- Exam
- 0,5
- Lectures
- 48
- Preparation
- 157,5
- Total
- 206,0
Sign up
Self Service at KUnet
As an exchange, guest and credit student - click here!
Continuing Education - click here!
As an exchange, guest and credit student - click here!
Continuing Education - click here!
Exam
- Credit
- 7,5 ECTS
- Type of assessment
- Oral examination, 30 minutesWithout preparation time
- Aid
- Without aids
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
More internal examiners
Criteria for exam assesment
The highest mark (12) is given for excellent exam performance
that demonstrates full mastering of the above mentioned teaching
goals with no or only small irrelevant gaps.
The grade 2 is given to a student who has achieved only minimally the course goals.
The grade 2 is given to a student who has achieved only minimally the course goals.
Course information
- Language
- English
- Course code
- NFYK12003U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 2
- Schedule
- A
- Course capacity
- No restriction to number of participants
- Continuing and further education
- Study board
- Study Board of Physics, Chemistry and Nanoscience
Contracting department
- The Niels Bohr Institute
Course responsibles
- Jan Ambjørn (ambjorn@nbi.ku.dk)
Saved on the
30-04-2013