LKEK10103U Terrestrial Environmental Chemistry
Brief review of soils, including chemical composition and properties of soil minerals and humic matter and emphasizing the characteristics of soil particle surfaces. Natural soil forming processes affecting soil pollutants such as acidification, clay migration, redox processes and leaching including interactions between abiotic and soil biochemical processes. Characterization of microbial degrader populations in soil and groundwater. Sampling, fractionation and analysis of soil and soil solutes emphasizing the importance of spatial variation of pollutant degradation and sorption in soils.
Review of pollutants in soil environments with emphasis on biogeochemical properties, monitoring data and mass balances for pollutants including heavy metals, radionuclides, acids, pesticides, endocrine disruptors, detergents, PAH’s, halogenated compounds, veterinary drugs/biomedicine, natural toxins, anthropogenic nanoparticles and microbial contaminants. Activity and mode of action of soil enzymes and soil microorganisms. Metal solubility, complexation and speciation in soil solution. Sorption (pollutant binding) processes including ion exchange, surface complexation (specific sorption) and partitioning into organic matter. The effect of ageing and sesquestration with respect to bioavailability and degradation. Reactions at particle surfaces including engineered nanoparticles. Redox processes, zonations and sequences. Degradation pathways, formation of metabolites, and models to quantify biodegradation and -mineralization kinetics. Macropores and colloidal transport. Software for computing speciation and for QSAR estimation of pollutant properties. Modelling of water and solute transport using state-of-the art software (DAISY) integrating degradation kinetics, sorption, climate, land use and transport properties. Integration of soil chemical, physical and microbiological properties into soil quality assessment with focus on soils as filters.
Cleaning and remediation of polluted soils with emphasis on bioremediation technologies such as enhanced microbial degradation of organic pollutants, bioaugmentation (use of introduced microorganisms for degradation), phytoremediation (use of plants to degrade or absorb pollutants) and use of biodetergents and bioligands for pollutant leaching.
Some topics will be taught together with the course in Aquatic Environmental Chemistry (FARMA-KU) running in the same block (module A). This mainly comprise lectures and theoretical exercises on soil and water pollution, biodegradation kinetics/pathways, metal speciation, equilibrium computation and redox processes.
The objectives of the course are to comprehend and to study i) how soils respond to man-made disturbances, ii) soils as “filters”, i.e. the efficiency of soils to degrade, neutralise and sorb environmental pollutants, iii) fate of pollutants in a terrestrial systems, iv) quantification of soil processes for assessment, modelling and forecasting the fate of pollutans in soil and groundwater, and v) new technologies for cleaning soils and groundwater.
After completion the course the student should be able to:
Knowledge:
- Classify and show overview of main inorganic and organic
pollutants in terrestrial ecosystems, and to present knowledge on
the relationships between land use and soil/groundwater quality
- Describe key properties and processes of pollutants critical for
sorption, degradation, bioavailability and transport of pollutants
in terrestrial systems
- Classify and summarize the molecular mechanisms controlling
pollutant degradation/transformation and bonding in soils and
water
- Describe analytical procedures and monitoring strategies for
pollutants in terrestrial systems
- Identify and reflect about the main strategies for soil and
groundwater remediation
Skills:
- Apply and demonstrate the use of general principles from
chemistry, physics and microbiology in environmental chemistry
- Compute chemical and physical properties of pollutants and
pollutant fate in terrestrial ecosystems
- Quantify pollutant sorption, degradation and transport using
different types of models and calculus
- Apply and evaluate procedures for soil and groundwater cleaning
(remediation)
- Retrieve and critical examine environmental chemical data
- Make reports on pollutant fate and remediation in terrestrial
environments
Competences:
- Combine data and information from different sources in calculus,
prediction and evaluation of pollutant mass balances, distribution,
fate and effects in terrestrial systems
- Diagnose the processes critical for the fate of any pollutant,
and critical selection of tools for analysis and evaluation
- Propose, analyse and assess the use of different remediation
technologies and strategies for clean-up of simple and complex
pollutant scenarios
- Discuss and assess the complexity of how modern agrotechnology,
land use and management affect soil and groundwater
quality.
Hansen, H.C.B. (ed)(2013) Soil Pollution: Biogeochemistry and
Modelling - including exercises.
Schwarzenbach, R.P. et al. (2005) Environmental Organic Chemistry,
2nd. Ed., Wiley, chapt. 14
Laboratory manual
Handout notes and journal papers.
Software for speciation analysis.
Software for QSAR estimation of pollutant properties
Software for transport modelling (DAISY)
Excursion material
- Basic course in Chemistry
- Course on soil or geochemistry, e.g. "Soil, Water and Plants"
- A basic course in physical chemistry will be helpful
- An intro to microbiology also will be helpful
- would like to apply basic chemistry, microbiology and physics to pollutant fate in soils and sediment
- would like hands on in the lab and with modelling
- seek to learn tools that can quantify speciation, bonding, degradation and transport
- like to work interdisciplinary and with an international group of students
- Category
- Hours
- Colloquia
- 20
- Exam
- 4
- Excursions
- 10
- Lectures
- 36
- Preparation
- 85
- Theory exercises
- 51
- Total
- 206
As an exchange, guest and credit student - click here!
Continuing Education - click here!
- Credit
- 7,5 ECTS
- Type of assessment
- Written examination, 4 h under invigilationWritten assignmentExamen comprise hand in of a project report (counts by 33 %) and a written examen (67 %)
- Exam registration requirements
- Hand in and oral presentation of project report. The report summarizes results from lab and modelling exercises.
- Aid
- All aids allowed
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
- Re-exam
- If 10 or fewer register for the reexamination the examination form will be oral.
Criteria for exam assesment
Course information
- Language
- English
- Course code
- LKEK10103U
- Credit
- 7,5 ECTS
- Level
- Full Degree Master
- Duration
- 1 block
- Placement
- Block 3
- Schedule
- C
- Course capacity
- 30
- Continuing and further education
- Study board
- Study Board of Natural Resources and Environment
Contracting department
- Department of Plant and Environmental Sciences
Course responsibles
- Hans Chr. Bruun Hansen (haha@plen.ku.dk)
Lecturers
Hans Christian Bruun Hansen (responsible), PLEN
Peter Engelund Holm, PLEN
Carsten Suhr Jacobsen, PLEN
Søren Hansen, PLEN