NMAA05009U  Matematisk modellering (Model)

Årgang 2014/2015
Engelsk titel

Mathematical Modelling (Model)

Kursusindhold

Dette kursus omhandler det klassiske tre-fase diagram i matematisk modellering. Diagrammet beskriver overgangen fra virkelighed til modeller og tilbage til virkeligheden. De tre faser er:
1. Et virkeligt problem bliver oversat til et matematisk problem.
2. Det matematiske problem løses indenfor en matematiske kontekst.
3. Løsningen oversættes og fortolkes i den tilsvarende biologiske, økonomiske, … kontekst.

Vi begynder med at kigge på "halv-færdige", simple modeller. Vi forsætter med mere komplekse og fuldstændige modeller,  og introducerer flere matematiske værktøjer, såsom differens- og differentialligninger og stokastiske simulationer. Teknikker til at skrive rapporter er også en del af kurset.

Kurset omfatter diskussion af hvorvidt modellerne er realistiske og deres anvendelighed. Eksempler vil blive hentet fra økonomi, biologi, fysik, sociologi, og daglige situationer. Vi kombinerer praktiske, teoretiske, og videnskabelige modeller. Det sker på en sådan måde, at studerende der sigter mod gymnasiet udvikler en portfolio med modeller, der kan bruges i undervisning, mens studerende indenfor ren matematik, statistik, matematisk økonomi, biologi og fysik lærer om matematiske modeller, de ellers ikke vil lære at kende og udvikler deres evne til at bruge dem.

Målbeskrivelser

Viden:
De studerende vil lære: tre-fase diagrammet i matematisk modellering; grundlæggende matematisk værktøj til modellering, såsom differens- og differentialligninger, stokastiske simulationer, og data analyse; at skrive projektrapporter; grundlæggende teknikker til Maple programmering til at analysere modeller.

Færdigheder:
Ved kursets afslutning vil de studerende have færdigheder i at: anvende modelleringsteknikker til analyse af modeller; identificere valgte, samt potentielle, antagelser og simplificeringer af en model; identificere virkelige problemer der kan formuleres matematisk; oversætte virkelige problemer til matematiske problemer og løse dem; fortolke de opnåede matematiske løsninger i forhold til virkeligheden.

Kompetencer:
Ved kursets afslutning forventes at de studerende kan bygge og analysere matematiske modeller; forstå modellens begrænsningerne; diskutere modellens anvendelse; fortolke modellens resultater i forbindelse med det virkeligt problem hvor modellen stammer fra.

Analyse 1 (An1) eller tilsvarende
En dobbelt forelæsning per uge i de første syv uger. Maple og håndskrevne øvelser. Projektarbejde, delvist i grupper. Individuelt arbejde og gruppearbejde vil være både med og uden tilsyn af underviseren. I de sidste to uger arbejdes der i grupper på afslutningsprojektet.
9 ugers undervisning.
Point
7,5 ECTS
Prøveform
Løbende bedømmelse
Karakteren udregnes på den følgende måde:
- Hjemmeopgaver i uge 1 til 7 tæller samlet set 70% i karakteren: Disse fordeles af 2 individuelle opgaver, som vægter hver 15%, og 2 gruppeopgaver, som vægter hver 20%.
- Afslutningsprojektet i uger 8 og 9 tæller 30% i karakteren. Afslutningsprojektet er gruppearbejde.

I gruppeopgaver vil der være redegjort for den enkelte studerendes bidrag. Alle hjemmeopgaver og afslutningsprojektet skal bestås for at bestå kurset. Hvis en hjemmeopgave ikke bestås, vil der gives mulighed for at aflevere den en gang mere. Afslutningsprojektet kan kun afleveres en gang eller i forbindelse med reeksamen.
Hjælpemidler
Alle hjælpemidler tilladt
Bedømmelsesform
7-trins skala
Censurform
Ingen ekstern censur
En intern bedømmer
Reeksamen
Reeksamen består i at aflevere de opgaver som ikke er bestået. Vægt er som i den almindelige eksam.
Kriterier for bedømmelse

Den studerende skal på tilfredsstillende måde godtgøre at han/hun lever op til fagets målbeskrivelse.

  • Kategori
  • Timer
  • Projektarbejde
  • 80
  • Forelæsninger
  • 14
  • Praktiske øvelser
  • 28
  • Forberedelse
  • 84
  • I alt
  • 206