NFYA04021U  Condensed Matter Physics 1 (CMP1)

Volume 2018/2019

BSc Programme in Nanoscience
BSc Programme in Physics


This course is a modern introduction to the fascinating world of condensed matter physics.  We will build upon basic concepts from quantum mechanics, electromagnetism, and statistical physics to develop an understanding of the properties of real materials and electronic devices. 


Some of the deep questions that we will address include: Why do some materials freely conduct electricity, while others are insulators?  Why do metals feel cold to the touch?  What holds the atoms together in a solid, and how do they arrange themselves? How does this arrangement affect the electronic and thermal properties of materials?  How can we control the properties of semiconductors, and use these capabilities to create the building blocks for classical and quantum electronic devices?


The course will be an interactive mix between lectures, discussions, and exercises.  Along the way we will apply the concepts that we learn to understand the properties of materials that are the subject of intense current interest for fundamental research and applications. Wherever possible we will make connections to ongoing research at NBI and in the field at large.


This course is a pre-requisite for some advanced courses in solid state physics and nano technology.

Learning Outcome

It is expected from the student that he or she is able to:

  • Describe various types of binding.
  • Identify various crystal lattice structures, and to explain the concepts of reciprocal space and the Brillouin zone, along with their crucial roles in scattering and the thermal and electronic properties of solids.
  • Discuss the importance of lattice vibrations (phonons) for the heat capacities of solids.

  • Explain why electrons do not significantly contribute the specific heat of solids, but are responsible for the thermal conductivity of metals.

  • Describe the electrical properties of simple metals on the basis of the free electron gas model.

  • Derive models for the electronic band structure of solids and from the band structure be able to explain the differences between insulators, metals and semiconductors.

  • Describe the electronic properties of semiconductors and how these can be modified.

  • Describe how simple electronic components like transistors work


The student should understand and be able to describe the fundamental properties of solids. He/she should come away knowing why some materials are insulators, and others are conductors, and how to explain the properties of each in terms of the quantum mechanics of atomic and electronic motion in a system with a crystalline lattice.


The course will give the student the basic knowledge and tools that will enable him/her to understand and describe the fundamental properties of solids, and to continue to more advanced courses in the field.

To be announced

The student is expected to have passed courses on quantum mechanics, statistical physics, and electromagnetism on the level covered in the corresponding Bachelors courses in Physics at KU.

Students who have not taken these courses or equivalents should contact the instructor before signing up for the course to clarify what background knowledge will be expected.
Lectures and exercises
Continuous feedback during the course of the semester
7,5 ECTS
Type of assessment
Written examination, 4 hours under invigilation
Continuous assessment
The exam consists of two parts: required homework sets count for 40% of the final grade, while the four-hour written exam counts for 60% of the final grade.
Only certain aids allowed

The course textbook(s) and your personal notes are allowed, but no computers, calculators, smartphones, or other electronic devices may be used during the written exam.

Marking scale
7-point grading scale
Censorship form
No external censorship
Several internal examiners

Same as ordinary written 4 hour exam. Points from finished homeworks sets during the course count for 40% of the grade. The homework sets cannot be resubmitted. 

For the third exam attempt, the student may choose to follow the course again and take the regular exam, or take the re-exam. 

If there are 10 students or less signed up for the re-exam, the exam may be changed to oral examination.

Criteria for exam assesment

See learning outcomes.

  • Category
  • Hours
  • Lectures
  • 40
  • Theory exercises
  • 82
  • Exam
  • 4
  • Preparation
  • 80
  • Total
  • 206